Infinite Mobility: Scalable High-Fidelity Synthesis of Articulated Objects via
Procedural Generation

Xinyu Lian'?, Zichao Yu?, Ruiming Liang”®, Yitong Wang’, Li Ray Luo', Kaixu Chen'+#,
Yuanzhen Zhou!, Qihong Tang®, Xudong Xu!, Zhaoyang Lyu'?, Bo Dai’, Jiangmiao Pang!

'Shanghai AI Laboratory 2South China University of Technology
3University of Science and Technology of China
“Tongji University >Fudan University®Harbin Institute of Technology, Shenzhen
"Institute of Automation, Chinese Academy of Sciences
8School of Artificial Intelligence, University of Chinese Academy of Sciences
The University of Hong Kong

{lianxinyu, luoli, chenkaixu, zhouyuanzhen, xuxudong, lvzhaoyang, pangjiangmiao}@pjlab.org.cn

zichaoyu@mail.ustc.edu.cn,

wangyitong23@m. fudan.edu.cn,

liangruiming2024@ia.ac.cn

210810616@stu.hit.edu.cn

bdai@hku.hk

Figure 1: We design probalistic programs to generate 22 common articulated objects. We demonstrate the motion sequence of
the generated articulated objects. Ours generated articulated objects bear accurate geometry, realistic textures, and reasonable

joints.

Abstract

Large-scale articulated objects with high quality are
desperately needed for multiple tasks related to embodied
AL Most existing methods for creating articulated objects
are either data-driven or simulation based, which are lim-

T Project Lead
Correspondence to: Zhaoyang Lyu, Xudong Xu

ited by the scale and quality of the training data or the fi-
delity and heavy labour of the simulation. In this paper,
we propose Infinite Mobility, a novel method for synthe-
sizing high-fidelity articulated objects through procedural
generation. User study and quantitative evaluation demon-
strate that our method can produce results that excel cur-
rent state-of-the-art methods and are comparable to human-
annotated datasets in both physics property and mesh qual-

ity. Furthermore, we show that our synthetic data can be
used as training data for generative models, enabling next-
step scaling up.

1. Introduction

The scaling law has demonstrated its efficacy across di-
verse machine learning domains, including computer vi-
sion, natural language processing, and reinforcement learn-
ing. Yet, scaling the training of embodied Al-related
tasks[37, 27, 29] remains challenging, largely due to the
scarcity of high-quality training environments. Sim-to-real
transfer[30] offers a promising solution by enabling train-
ing in simulation and then transferring the results to re-
ality. Articulated objects, such as cabinets with drawers
and fridges with openable doors, are common in the real
world. They can depict objects’ fine-grained structures and
the corresponding manipulation operations, making them
crucial for simulating realistic action chains in virtual en-
vironments. Although these objects are vital for the sim-to-
real paradigm, there are limited datasets of them, and most
existing datasets [37, 21, 18, 12, 20] are relatively small in
scale.

To create sufficiently realistic digital twins of articulated
objects for sim-to-real transfer, it is essential to have both
precise physical properties of joints and high-quality 3D as-
sets. It’s natural to try to create a real-to-sim-to-real loop by
reconstructing articulated digital twins from real world ob-
jects. But such methods[21, 11, 16, 18, 20] need manually
collected data which is labor-intensive and time-consuming.
Quality of 3D assets from these reconstructed objects are
also not guaranteed. Some try to articulate existing 3D
assets[37, 33, 38]. However, most of such methods rely
on existing or self-made datasets for priors of articultaion
information and thus are still limited by data scale. In re-
cent years, generative models[14, 17] have been adopted to
generate articulated objects. These models leverage popular
diffusion models[&] as generation backbones to capture the
training dataset distribution, but their performance remains
suboptimal as most datasets contain only dozens of samples
per category. It remains a challenge to obtain large amounts
of high quality articulated 3D objects in a efficient way.

In this paper, we introduce Infinite Mobility, a proce-
dural pipeline for synthesizing large-scale articulated ob-
jects. For each object, we represent its articulation as a
tree structure analogous to a URDF, where nodes corre-
spond to links and edges represent joints. Our approach
leverages a tree-growing strategy for articulation structure
generation. Starting from a root node, we iteratively grow
the tree by attaching new nodes to existing ones. Based
on the semantic characteristics of each node, we have de-
vised a set of growth rules that decide whether to attach a
new part and specify which component to add if needed.

This strategy ensures that essential components are gener-
ated while non-essential parts are incorporated gradually,
facilitating the reliable and diverse generation of articula-
tion structures. In contrast to above methods which rely on
noisy model inference for joint information, our procedu-
ral paradigm provides full control over the semantics and
geometry of each part and joint, thereby ensuring the ac-
curacy of physical properties. By configuring the pipeline
with specific parameters, our programming rules can gen-
erate highly sophisticated articulation trees. With no upper
limit on tree size, our pipeline is capable of constructing
objects that extend beyond the scope of existing datasets or
reconstruction from real scenes. Beyond these, our hybrid
asset pipeline seamlessly integrates procedurally generated
meshes with curated dataset assets during the assembly of
articulated objects, ensuring both the quality and diversity
of the final mesh.

To demonstrate the superiority of our pipeline, we con-
duct evaluations in both physical property and mesh qual-
ity, comparing our results with human-annotated datasets
and state-of-the-art generative methods. Physical properties
can only be evaluated in simulation, so we use Sapien[37]
to record the movement of each joint and invite human
annotators to rate the fidelity of videos. Regarding mesh
quality, we rendered both normal maps and RGB images
for each articulated object, constructing paired samples for
comparison. We leveraged vision language models (VLMs)
as evaluators[30] to facilitate large-scale testing. Results
show that our pipeline provides results slightly better than
datasets and defeats state-of-the-art methods in all aspects.
Furthermore, we utilized our synthetic data to train genera-
tive models, thereby facilitating subsequent scaling efforts.

In summary, our contributions are three-folded:

* We propose Infinite Mobility, a novel pipeline for syn-
thesizing high-fidelity articulated objects through pro-
cedural generation boosted by 3D datasets annotated
with part information.

* We demonstrate that our method can produce re-
sults that excel current state-of-the-art methods and
are comparable to human-annotated datasets in both
physics property and mesh quality.

* We show that our synthetic data can be used as training
data of existing generative models, enabling next-step
scaling.

2. Related Work

Both procedural generation and articulated objetcs have
been in public view for decades. In this section, we com-
pare the unique focuse of our work with existing procedural
generators and reveal the vulnerability of other articulated
objects data sources.

'Dummy

Leg

‘ Dummy Support
Leg ;

Table Top

Articulation Structure Mesh Generation Using

Generation Using Procedural Rules

—

Procedural Programs and Dataset Retrieve

joint @

—

revolute fixed
joint

PBR Material Generation

Using Procedural Programs

Joint Generation Based on
Articulation Structure and Meshes

Figure 2: The whole pipeline can be devided into four parts: articulation tree structure generation, geometry generation,

material generation and joint generation.

Procedural Generation For Machine Learning Proce-
dural generation has been broadly used in providing train-
ing data and building evaluation environments. Since
its debut in the 1980s, procedural generation quickly be-
came a popular trick for game developing. Agents[?]
playing such games as Rogue, Minecraft, Diablo III and
Civilisation VI have attracted much attention. Procgen
Benchmark[5] provides 16 procedrally generated game en-
vironments for multiple tasks. In reinforcement learning,
domain randomization[30, 34] is a simple form of proce-
dural generation and one way to mitigate overfitting in ma-
chine learning. To prepare more complex scenes for embod-
ied Al, ProcTHOR [6] built a procedural system with more
than 1000 static objects. Pushing the boundary of proce-
dural generation, Infinigen[25, 26] use purely programming
rules with layout constraint solvers and achieve remarkable
results. All those works are mostly focused on generating
scenes with static objects but ignoring more fine-grained in-
teractive details of objetcs.

Articulated Object Datasets Articulated object datasets
are a category of datasets that contain deformed mesh
parts annotated with fine-grained hierarchical articulation
information. Various datasets have been proposed to pro-
vide assets in similar formats[3, 22, 21, 9, 15, 37, 18, 12,

, 20]. ShapeNet[3] and PartNet[22] are two datasets
that pioneered to provide relatively large-scale part anno-
tations either labelled in a combined pipeline or manually
and PartNet[22] has begun to offer hierarchically seman-
tic information. Based on these two datasets, PartNet-
Mobility[37] selected 46 categories of articulated objects
and endowed them with high-quality articulation informa-
tion. Extended from PartNet-Mobility, AO-Grasp[23] fo-
cused on grasping interaction with articulated objects and
labelled a subset of PartNet-Mobility[37] with related data.
Those datasets, through some introduced annotation algo-
rithms, still require massive labor for annotation and are
limited in scale. Instead of being derived from existing
asset datasets, MultiScan[20], AKB48[18], ParaHome][12],

RoCap[15] and RBO[21] consider from a real-to-sim per-
spective. The first three use real-world scans or images to
reconstruct meshes with articulation information, while the
latter document interactions with interactable objects for ar-
ticulation. However, those digital twins that were recon-
structed are not necessarily equipped with satisfactory mesh
topology and articulation information. Apart from this, the
real-to-sim paradigm can hardly supply objects with sophis-
ticated inner articulation structures or have not been made
in reality.

Articulated Object Generation. Some approaches to
creating articulated objects are quite similar with those used
to create datasets. Part of real-to-sim methods[4, 16, 19,

, 24] reconstruct whole object mesh and deploy seg-
mentation algorithms to obtain part with single function-
ality and rely on articulation perception algotithms for ar-
ticulation. Others[31, 35, 7, 32] reconstruct object as im-
plicit representation and retrieve desired parts after articu-
lation perception. These approaches need accurate articu-
lation perception models for high-fidelity results. Earlier
ones[4, 16, 31, 35,7, 32] rely on their on models which de-
pend on data-driven traning and the newest ones[19, 24, 13]
resort to VLMs or LLMs which are not specialized in this
task for results. Attempts have also been made to gener-
ate articulated objects from real-world simulation and vir-
tual simulators. Those routes[! 1, 28, 39, 10] usually use
videos or object in different poses to infer articulation in-
formation. However, the heavy labour and the noise in
the real-world or virtual simulation data mired those ideas.
Generative[14, 17] models have also been used in this area.
Built upon ScrewNet[10], NAP[14] design a new articu-
lation tree parameterization and then apply a DDPM][¢]
as generation backbone. CAGE][!7] continues to deploy
DDPM[§] but with a more novel graph attention as network
model and inject control signals for better usages. Nonethe-
less, limited training data still hinders generation with high
standards.

3. Methodology
3.1. Preliminary

Articulated objects constitute a class of objects that con-
sist of multiple rigid bodies connected by various joints.
We refer to URDF (Unified Robot Description Format) as
the standard format for describing articulated objects. Each
rigid body is described as a link, and each joint is a connec-
tion between two links. With such structure, an articulated
object can be described as a tree structure, where each node
represents a link and each edge represents a joint. A sim-
ple structure described by URDF is shown in Figure 3. In

c

prismati

Figure 3: Structure of the URDF file. Each link is a part
of the object, which is represented as a textured mesh in
our case. Each joint connects two links and describes the
articulation structure between them.

URDE, each link is described by its shape which can be ei-
ther one of its predifined shapes or path to meshes stored
in common formats. Joints in URDF are described by their
origin, type, axis, limits, and dynamics properties. With
regularly supported joint types like revolute, prismatic, con-
tinuous and fixed URDF is capable to portray simple move-
ments with low DOFs. To describe more complex move-
ments, URDF allows for the definition of compound joints,
which are joints that are composed of multiple simple joints
and dummy links with no shape specified. Such compound
joints with simple joints connected one by one enable the
description of complex movements with high DOFs. Joints
we implemented are illustrated in Figure 4. Little work has
been done to generate articulated objects with compound
joints which are common in daily objects.

3.2. Articulated Object Generation

For the construction of articulated objects, both geo-
metric and articulation data must be synthesized. Con-
trary to real-to-sim methods[21, 11, 16, 18, 20] and ap-
proaches using given 3D asset datasets[37, 33, 38] which
extract articulation information out of an given object, our
pipeline is much like those generative models for articulated
objects[14, 17] which build the articulation structure first
and then fill each node with meshes. Our work generates all
articulation structures through a collection of purposefully

ol

fixed joint

. ; ‘

prismatic joint revolute joint

R rotation

'. o 0 ‘ axis
H Ng ! prismatic
I

revolute flip revolute limited planar axis
prismatic joint joint joint

Figure 4: We implement 6 kinds of joints in our articulated
objects. First three are simple joints, and the last three are
compound joints.

designed programs that utilize randomly sampled input pa-
rameters. The codebase employed for result generation is
systematically organized into category-specific generators,
thereby enhancing usability and facilitating more efficient
implementation. With most shape related parameters con-
trollable by users and joint related parameters sampled from
range calculated out of shape parameters, we can ensure
both highly flexible mesh control and high-fidelity articu-
lation structure generation to be achieved by our pipeline.
Workflow of our pipeline is summarized in Figure 2.

Articulation Tree Structure Generation In our pipeline,
articulation tree structures are formulated as adjacency lists.
With each node connected to only one parent joint, we can
easily constraint a tree structure to be formed. For each
daily-life category, there exists a general understanding of
proper part attachments. Leveraging this understanding, we
can establish a category-specific growth strategy for articu-
lation trees. For every node with certain semantics, we de-
fine its requested children and plausible branches that can
be attached to it. Those requested children depict the basic
structure of the object and are necessary for the object to
be complete like the legs and table top of a table. Plausible
branches are optional and can be added to the object to in-
crease its diversity like buttons of microwave. Commencing
from a root node, which signifies the object’s origin, nodes
can be recursively appended to the tree structure. For nodes
amenable to attachments, the addition of new branches is
dictated by discrete random parameters. Through recursion,
a plausible tree structure is derived for each sample.

Geometry Generation Our geometry generation process
is implemented via two approaches: procedural mesh gen-
eration and mesh retrieval with procedural refinement. For
both methods, we first determine the bounding box of each
node based on its semantics and generated meshes of other
nodes. We will introduce our mesh retrieve approach in de-
tail later in section 3.3. For procedural mesh generation, our
pipeline is based on Infinigen[25, 26] augmentated with our

elabrate mesh creation programs.

Material Generation Materials used in our work are
based on Blender shader node system. The material gener-
ation process is based on Infinigen[25, 26] boosted by col-
lected crafted materials. To add more randomness, we mod-
ify diffuse, specular, roughness and normal maps of mate-
rials with random noise. For exportation, we resort to API
created by Infinigen to save materials and textures in a for-
mat that can be easily imported into simulation tools.

Joint Generation Once the articulation tree structure is
generated, the joint type for each edge is determined based
on its parent and child nodes. The physical properties of
each joint, including its axis, position, and motion range, are
derived from its type and the overall generated meshes. This
approach enables the generation of articulation trees that are
both topologically diverse and physically high-fidelity. Re-
sult samples are shown in Figure 5.

3.3. Procedural Mesh Retrieve

As previously, meshes used in our pipeline can be re-
trieved from our curated dataset. This section outlines the
methodology behind our dataset construction and details the
mesh retrieval process.

Dataset Construction 3D asset daasets like ShapeNet[3]
and PartNet[22] use segmentation algorithms to obtain part
meshes and label them with various annotations. However,
those meshes in such datasets are not consistent in quality
and part with single functionaliy is often segmentated into
many pieces, resulting in bad visual fidelity and obstacles
when applying new materials. We concentrate on 22 part
labels which are most commonly interacted when agents are
trained to perform tasks and quary those parts according to
labels. By inspecting and fixing those meshes by huamn
labor, we obtain a curated dataset containing hundreds of
meshes with requisite information. Comparisons between
meshes from our dataset and meshes in the original dataset
are shown in Figure 7.

Mesh Retrieve with Procedural Refinement According
to the articulation tree generated, we can determine the se-
mantics of every node and thus retrieve mesh from dataset
mentioned above. For most existing methods, retrieved
meshes are only transformed to fit bounding boxes. How-
ever, if new meshes are placed directly into required bound-
ing boxes, there would be parts with complex shapes that
either suspend in the air or penetrate into other parts. To
avoid such situations, we only use bounding box for initial
placements and then define each part label with procedu-
rally defined critical supporting points. By aligning meshes
with those points, we can ensure that the final mesh is phys-
ically plausible and visually appealing. Example of such
situation and our fix is shown in Figure 8. Qualitative re-
sults are shown in Figure 6.

3.4. Ensure Physical Plausibility

Creating fancinating meshes combined in a tree structure
with proper semantics is able to ensure the basic fidelity of
the generated objects. However, to adopt those objects in
simulation tools, a series of amendments need to be adopted
to conquer following problems we observed.

Problem: Ill-designed parts lead to unreasonable colli-
sions with rigid ground. Some artists make models dif-
fernet from reasonable real world objects for better appear-
ance and simplicity. This phenomenon happens frequently
when it comes to the base part of an object. Objects created
this way suffer from problems when parts in lower positions
are articulated with joints moving downward.
Modification: For those categories, we either build a base
to position the articulated part further from the ground, or
we modify the articulated parts by shrinking their sizes and
limiting their motion ranges to a proper number.

Problem: Insufficient gap between parts cause unstable
movements of articulated joints. It’s common to build
meshes as a whole with no gaps between parts for conve-
nience when modeling. However, this makes it difficult
for simulation to handle the collisions when such meshes
are directly divided into parts and imported. When meshes
are imported into simulation, different simulators have dif-
fernet strategies for collision detection. But those methods
hardly use original meshes as the real collidors but resort to
other approximations for efficiency. Such practice usually
brings wrong collisions into the simulation of articulated
joints even if those meshes are not overlapping.

Modification: For any parts articulated by joints, we addi-
tionally bring in gaps of 2% of original scales of meshes.

We present simulation results of one example and our
amendment result in Figure 9. It’s worth mentioning that
problems mentioned above are quite frequent in articulated
objects from other sources and appear in commonly used
datasets like PartNet-Mobility[37].

4. Experiment

Our pipeline constitutes a high-quality data source sim-
ilar to existing datasets like PartNet-Mobility[37] and sur-
pass generative model like NAP[14] and CAGE[!7]. In this
section, we evaluate the quality of our generated results,
train a generative model on our results and verify the ap-
plication of our results in embodied Al

4.1. Evaluations of Articulated Objects

We first assess the quality of our articulated objects by
comparing them against the PartNet-Mobility dataset[37]
and samples produced by state-of-the-art generative models
[14, 17]. To evaluate joint fidelity, we conduct human evalu-
ations in which 10 participants review 50 randomly selected

. ° °
(1] L] L1 L] ®
® dummy
frame
door
drawer
) ° °
(ZLX A &) ® dummy
e oe00ocoo (20 I) o o o e
e 0 060606060 0 0 0 o leg
[X)
' ZXXXX) spin
s ® 0 0 0 o ° [] wheels

arm

o o
® back
® stretch
seat
cap

[2 ¢ ® dummy
e o ¢ e o bulb
$ u
[° [} [I } bulb
° rack
2 ° ° o ° lamp
'Y head
leg
® opin
leg
o segments
connector
support
bl curve
o [] o
[N N N] [] 000000000
® dummy

curtain
hold

curtain

panel
©® shutter

shutter
° frame

Figure 5: Examples of our generated cabinets, chairs, lamps and windows. For each object, we display the textured mesh
with the corresponding articulation tree above. The generated objects are diverse in both shapes and articulation structures.

L A SIA 4
i 1 1

Retrieved

Generated

N .

Generated Retrieved

(=) (=) (=]

Generated Retrieved

Generated Retrieved

Figure 6: We use two methods to obtain the geometry of each part of an object. 1) Blender python API created meshes.
2) Parts retrieved from our carefully curated and processed dataset. For each group of objects, the left one is generated by
Blender python API, while the right 3 objects are obtained by retrieving parts from curated PartNet-Moblity. Parts obtained
from both methods can be seamlessly joined, and it improves the diversity of generated shapes by adopting both methods to

obtain part geometry.

object pairs from each category, judging joint performance
based on movement videos. One sample pair is displayed in
Figure 10. In addition, visual language models (VLMs) are
employed to assess mesh quality. Following a recent eval-
uation paradigm [36], we utilize GPT-4v as an evaluator by
feeding it normal maps and RGB images, thereby enabling
large-scale, unbiased testing that rates both the geometry
and texture of the meshes. We present the results in Table 1
and Table 2.

Complexity and diversity of our results and PartNet-
Mobility[37] are also measured through quantitative met-
rics. For complexity, we calculated average joint numbers

of each category from both data sources. For diversity, we
calculated variances of joint number and average Tree-Edit-
Distance between each pair of articulation trees in a cate-
gory. Results are shown in Table 3.

We further compare the generation time of our pipeline
with NAP[14] and CAGE[17]. Results are shown in Table
4.

4.2. Training Generative Models

To further scale the generation of articulated objects, we
train generative models using results from our pipeline. We
use CAGE[17] as the generative model and train it with

Human Evaluation (Articulcation) GPT Evaluation (Geometry) GPT Evaluation (Texture)

Catego
g Ours (%) PartNet-Mobility (%) Equal (%) Ours (%) PartNet-Mobility (%) Equal (%) Ours (%) PartNet-Mobility (%) Equal (%)

All Categories 8.76 4.63 86.61 64.18 35.45 0.37 84.81 14.44 0.74
Bottle 9.64 442 85.94 78.00 21.56 0.44 91.56 8.44 0.00
Dishwasher 15.17 4.99 79.84 71.43 28.57 0.00 85.45 14.55 0.00
Display TV 8.20 5.40 86.40 35.14 64.86 0.00 58.86 40.54 0.60
Door 7.20 3.20 89.60 74.60 25.08 0.32 79.37 20.32 0.32
Fridge 3.00 0.60 96.40 69.79 29.95 0.26 87.34 12.66 0.00
Lamp 7.40 8.00 84.60 75.13 24.11 0.76 77.48 21.62 0.90
Microwave 7.39 2.20 90.42 62.39 37.61 0.00 64.10 35.90 0.00
Oven 8.76 1.39 89.84 26.34 73.66 0.00 56.84 42.74 0.43
Pot 4.20 0.40 95.40 54.67 45.33 0.00 82.22 17.33 0.44
Table 13.57 4.79 81.64 72.89 26.89 0.22 24.67 75.11 0.22
Tap 9.60 0.20 90.20 90.00 10.00 0.00 93.11 6.89 0.00
Toilet 22.86 0.00 77.14 59.33 40.67 0.00 87.56 12.44 0.00
Cabinet 9.40 2.60 88.00 47.33 52.67 0.00 93.65 6.35 0.00
Window 3.21 6.41 90.38 76.81 23.19 0.00 75.93 24.07 0.00
Chair 1.99 4.57 93.44 66.29 32.20 1.52 78.52 21.48 0.00

Table 1: Compare articulated objects generated by our method and those from PartNet-Mobility in terms of kinematic ar-
ticulation, geometric accuracy, and textural fidelity. We report the comparative success rates of our method versus PartNet-
Mobility. “Equal” denotes that the human evaluator or GPT assess the quality of the two objects as equivalent.

Table 3: Compare articulated objects gener-
ated by our method and those from PartNet-
Mobility in terms of joint numbers and diver-
sity of tree structures.

Table 2: Compare articulated objects generated by our method, CAGE and
NAP in terms of kinematic articulation and geometric accuracy.

Human Evaluation (Articulation) GPT Evaluation (Geometry)

Category

Ours (%) CAGE (%) Equal (%) Ours(%) CAGE (%) Equal (%) Metrics Ours _ PartNet-Mobility
All Categories 22.95 5.60 71.45 79.26 20.74 0.00 Average Joint Number 12.32 501
Tabl'e 19.04 7.62 73.35 87.50 8.33 4.17 Variance of Joint Number 659.02 40.31
Cabinet 11.82 9.82 78.36 48.00 51.33 0.67 Tree Edit Distance 78.62 3.88
Dishwasher 29.58 2.01 68.41 65.62 34.38 0.00
Microwave 28.69 3.20 70.92 65.28 34.72 0.00))
Oven 22.24 2.20 71.56 69.79 29.95 0.26 Table 4: Compare generation time of our
Fridge 29.28 1.99 68.73 84.31 15.69 0.00 method, NAP and CAGE.

Human Evaluation (Articulation) GPT Evaluation (Geometry)

Category

Ours (%) NAP (%) Equal (%) Ours(%) NAP (%) Equal (%) Metrics Ours NAP CAGE
All Categories 58.36 7.96 33.69 74.81 24.81 0.37 N ;

Time(s / object) 0.46 2.04 1.96

our generation results. Different from the original CAGE
trained using PartNet-Mobility[37] which is small in scale,
we used 1000 samples per category for training. We display
two result samples in Figure 11.

4.3. Embodied AI

Our results can be imported in popular simulation envi-
ronmets like Sapien[37], Isaac Sim and Genesis[1]. In isaac
sim, we use our results to annotate waypoints for articulated
objects and train agents using motion-planning algorithms.
We present samples in Figure 12.

5. Limitations

At this stage, Infinite Mobility still has some limitations
which could be explored in future works. Since this ver-
sion of Infinite Mobility is built on generators with largely
human crafted rules, it require considerable efforts to be ex-

pended to other categories. The automation of this process
could probably be achieved by using LLMs with enough
spatial intelligence and coding abilities. Joints parameters
like type, axis and motion range have been created with high
quality now, but properties like friction, damping and motor
strength are still missing. Work could be done to infer those
properties from meshes, materials and joint types.

6. Conclusion

In this paper, we present a procedural pipeline for gen-
erating high-fidelity articulated objects. Quality of proce-
durally generated data from our work beat those from other
models and rival best dataset now in both appearances and
articulation properties. Our work demonstrates the potential
of procedural generation in creating not only appearance ap-
pealing but also structure diverse objects.

Original Ours Ours

Figure 7: Original parts from PartNet and ShapeNet bear
many back faces and thus their normals are highly irregular.
We flip these back faces in Blender using recalculate normal
function followed by human repair and ensure the meshes

bear consistent outward-facing normals.

Naive Bounding Box Based Placement ‘_ =

N Align to Support Point #
Get Support Point -

Figure 8: We adopt support point-based placement to posi-
tion the retrieved part on the object. Naive bounding box-
based placement may create a gap between the retrieved part
and the object. Our approach guarantees a seamless connec-
tion.

Original

References

[1] Genesis Authors. Genesis: A universal and generative
physics engine for robotics and beyond, December 2024. 7

[2] Shaofei Cai, Zhancun Mu, Kaichen He, Bowei Zhang,
Xinyue Zheng, Anji Liu, and Yitao Liang. Minestudio:
A streamlined package for minecraft ai agent development.
2024. 3

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 3,5

[4] Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun Mo,
Alex Fang, Karthikeya Vemuri, Alan Wu, Dieter Fox, and
Abhishek Gupta. Urdformer: A pipeline for constructing
articulated simulation environments from real-world images.

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

(13]

[14]

[15]

(16]

arXiv preprint arXiv:2405.11656, 2024. 3

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schul-
man. Leveraging procedural generation to benchmark re-
inforcement learning. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 2048-2056. PMLR, 13-18
Jul 2020. 3

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs,
Kiana Ehsani, Jordi Salvador, Winson Han, Eric Kolve,
Aniruddha Kembhavi, and Roozbeh Mottaghi. ProcTHOR:
Large-scale embodied Al using procedural generation. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. 3

Jianning Deng, Kartic Subr, and Hakan Bilen. Articu-
late your neRF: Unsupervised articulated object modeling
via conditional view synthesis. In The Thirty-eighth An-
nual Conference on Neural Information Processing Systems,
2024. 3

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models, 2020. 2, 3

Ruizhen Hu, Wenchao Li, Oliver Van Kaick, Ariel Shamir,
Hao Zhang, and Hui Huang. Learning to predict part mobil-
ity from a single static snapshot. ACM Trans. Graph., 36(6),
Nov. 2017. 3

Ajinkya Jain, Rudolf Lioutikov, Caleb Chuck, and Scott
Niekum. Screwnet: Category-independent articulation
model estimation from depth images using screw theory. In
2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), page 13670-13677. IEEE Press, 2021. 3
Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto:
Building digital twins of articulated objects from interaction.
In Conference on Computer Vision and Pattern Recognition
(CVPR),2022. 2,3,4

Jeonghwan Kim, Jisoo Kim, Jeonghyeon Na, and Hanbyul
Joo. Parahome: Parameterizing everyday home activities to-
wards 3d generative modeling of human-object interactions,
2024. 2,3

Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue
Yang, Yecheng Jason Ma, Kyle Vedder, Arjun Krishna, Di-
nesh Jayaraman, and Eric Eaton. Articulate-anything: Auto-
matic modeling of articulated objects via a vision-language
foundation model. In The Thirteenth International Confer-
ence on Learning Representations, 2025. 3

Jiahui Lei, Congyue Deng, Bokui Shen, Leonidas Guibas,
and Kostas Daniilidis. NAP: Neural 3d articulated object
prior. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. 2,3,4,5,6

Jiahao Nick Li, Toby Chong, Zhongyi Zhou, Hironori
Yoshida, Koji Yatani, Xiang ’Anthony’ Chen, and Takeo
Igarashi. Rocap: A robotic data collection pipeline for the
pose estimation of appearance-changing objects, 2024. 3
Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. PARIS:
Part-level reconstruction and motion analysis for articulated
objects. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2023. 2, 3,4

|

A
y

i/

[

e

L L

Figure 9: We carefully position each part and optimally configure the joint parameters to guarantee that no collisions occur
either among the parts themselves or between the object and the ground during its articulation. The top row is a dishwasher
from PartNet-Mobility. When the dishwasher door is opened, its base collides with the ground, forcing the main body to tilt
upwards. While the dishwasher generated by our method in the bottom row does not have this problem.

Figure 10: Human evaluators observe textureless videos
of our generated articulated objects (lower row) and those
from PartNet-Mobility (upper row), subsequently determin-
ing which exhibits superior motion structure.

ITII1

Figure 11: Examples of articulated objects generated by
CAGE trained on our results. The generated object has ac-
curate geometry and reasonable motion structure.

(17]

(18]

(19]

(20]

Jiayi Liu, Hou In Ivan Tam, Ali Mahdavi-Amiri, and Manolis
Savva. Cage: Controllable articulation generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17880-17889, 2024. 2, 3, 4,
5,6

Liu Liu, Wenqgiang Xu, Haoyuan Fu, Sucheng Qian, Yang
Han, and Cewu Lu. Akb-48: A real-world articulated object
knowledge base, 2022. 2, 3, 4

Zhao Mandi, Yijia Weng, Dominik Bauer, and Shuran Song.
Real2code: Reconstruct articulated objects via code genera-
tion. In The Thirteenth International Conference on Learn-
ing Representations, 2025. 3

Yongsen Mao, Yiming Zhang, Hanxiao Jiang, Angel Chang,
and Manolis Savva. Multiscan: Scalable rgbd scanning for
3d environments with articulated objects. In S. Koyejo, S.

(21]

[22]

(23]

(24]

[25]

[26]

[27]

Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems,
volume 35, pages 9058-9071. Curran Associates, Inc., 2022.
2,3,4

Roberto Martin-Martin, Clemens Eppner, and Oliver Brock.
The rbo dataset of articulated objects and interactions, 2018.
2,3,4

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna
Tripathi, Leonidas J. Guibas, and Hao Su. PartNet: A large-
scale benchmark for fine-grained and hierarchical part-level
3D object understanding. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019. 3,
5

Carlota Parés Morlans, Claire Chen, Yijia Weng, Michelle
Yi, Yuying Huang, Nick Heppert, Lingi Zhou, Leonidas
Guibas, and Jeannette Bohg. Ao-grasp: Articulated object
grasp generation, 2024. 3

Xiaowen Qiu, Jincheng Yang, Yian Wang, Zhehuan Chen,
Yufei Wang, Tsun-Hsuan Wang, Zhou Xian, and Chuang
Gan. Articulate anymesh: Open-vocabulary 3d articulated
objects modeling. arXiv preprint arXiv:2502.02590, 2025. 3

Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei,
Mingzhe Wang, Yiming Zuo, Karhan Kayan, Hongyu Wen,
Beining Han, Yihan Wang, Alejandro Newell, Hei Law,
Ankit Goyal, Kaiyu Yang, and Jia Deng. Infinite photore-
alistic worlds using procedural generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 12630-12641, 2023. 3,4, 5

Alexander Raistrick, Lingjie Mei, Karhan Kayan, David
Yan, Yiming Zuo, Beining Han, Hongyu Wen, Meenal
Parakh, Stamatis Alexandropoulos, Lahav Lipson, Zeyu
Ma, and Jia Deng. Infinigen indoors: Photorealistic in-
door scenes using procedural generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 21783-21794, June 2024. 3, 4,
5

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A Platform for Embodied Al Research. In

Figure 12: Kinematic sequences demonstrating a bimanual robotic manipulator interacting with our generated articulated
objects within the Isaac Sim simulation environment.

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019. 2

Chaoyue Song, Jiacheng Wei, Chuan Sheng Foo, Guosheng
Lin, and Fayao Liu. Reacto: Reconstructing articulated ob-
jects from a single video. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5384-5395,2024. 3

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans,
Yili Zhao, John Turner, Noah Maestre, Mustafa Mukadam,
Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan,
Vladimir Vondrus, Sameer Dharur, Franziska Meier, Woj-
ciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun, Ji-
tendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0:
Training home assistants to rearrange their habitat. In Ad-
vances in Neural Information Processing Systems (NeurlPS),
2021. 2

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-
ciech Zaremba, and Pieter Abbeel. Domain randomization
for transferring deep neural networks from simulation to the
real world. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 23-30, 2017.
2,3

Wei-Cheng Tseng, Hung-Ju Liao, Lin Yen-Chen, and Min
Sun. Cla-nerf: Category-level articulated neural radiance
field. In 2022 International Conference on Robotics and Au-
tomation (ICRA), page 8454-8460. IEEE Press, 2022. 3
Lukas Uzolas, Elmar Eisemann, and Petr Kellnhofer.
Template-free articulated neural point clouds for reposable
view synthesis. Advances in Neural Information Processing
Systems, 36, 2024. 3

Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qin-
ping Zhao, and Kai Xu. Shape2motion: Joint analysis of
motion parts and attributes from 3d shapes, 2019. 2, 4
Lilian Weng. Domain randomization for sim2real transfer.
lilianweng.github.io, 2019. 3

Yijia Weng, Bowen Wen, Jonathan Tremblay, Valts Blukis,
Dieter Fox, Leonidas Guibas, and Stan Birchfield. Neural
implicit representation for building digital twins of unknown
articulated objects. In CVPR, 2024. 3

(36]

(37]

(38]

(39]

Tong Wu, Guandao Yang, Zhibing Li, Kai Zhang, Ziwei Liu,
Leonidas Guibas, Dahua Lin, and Gordon Wetzstein. Gpt-
4v(ision) is a human-aligned evaluator for text-to-3d genera-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 22227—
22238, June 2024. 2, 6

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and
Hao Su. SAPIEN: A simulated part-based interactive envi-
ronment. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020. 2, 3,4, 5,6, 7
Zihao Yan, Ruizhen Hu, Xingguang Yan, Luanmin Chen,
Oliver Van Kaick, Hao Zhang, and Hui Huang. Rpm-net:
recurrent prediction of motion and parts from point cloud.
ACM Trans. Graph., 38(6), Nov. 2019. 2, 4

Chengliang Zhong, Yuhang Zheng, Yupeng Zheng, Hao
Zhao, Li Yi, Xiaodong Mu, Ling Wang, Pengfei Li, Guyue
Zhou, Chao Yang, Xinliang Zhang, and Jian Zhao. 3d im-
plicit transporter for temporally consistent keypoint discov-
ery, 2023. 3

